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Abstract

This paper introduces a new estimation method of Luby-Rackoff’s
pseudorandomness and maximum average of differential probability
of block ciphers with SPN(Substitution and Permutation Network)-
structures like E2. In this paper, we analyze the pseudorandomness of
the SPN-structure and E2-like transformations and show that this can
be easily calculated by simple matrix calculation, and clarify that the
linear transformation used in E2 offers good pseudorandomness. More-
over, we examine the maximum average of the differential probability
of the SPN-structure. We show that this can be calculated recursively
by a novel calculation method and confirm that the linear transforma-
tion used in E2 offers good immunity for differential attacks when used
in the 4-round SPN-structure.

keywords. E2, E2-like transformation, SPN-structure, maximum aver-
age of differential probability, pseudorandomness

1 Introduction

In this paper, we analyze security of block ciphers with SPN(Substitution
and Permutation Network)-structures like E2. We consider two definitions of
security - Luby-Rackoff’s pseudorandomness and maximum average of differ-
ential probability. We introduce a new estimation method of Luby-Rackoff’s
pseudorandomness and maximum average of differential probability of block
ciphers with SPN(Substitution and Permutation Network)-structures like
E2.

The notion of a pseudorandom function generator (PRFG) was intro-
duced by Goldreich, Goldwasser and Micali in [GGM84] who showed how to
efficiently construct a pseudorandom function generator from a pseudoran-
dom bit generator. In [LR86], Luby and Rackoff defined a pseudorandom
invertible permutation generator (PRPG). Using ideas behind the design



of the Data Encryption Standard, they showed how to efficiently construct
a pseudorandom invertible permutation generator from an pseudorandom
function generator. A practical implication of their result is that any pseu-
dorandom function generator can be used to construct a block private key
cryptosystem that is secure against chosen plaintext attack, which is one of
the strongest known attacks against a cryptosystem. They also defined a
generalized pseudorandom function, i.e. (n,m,k,¢€) - pseudorandom func-
tion (PRF). They showed (n,m, k,€)-PRF constructs (2n,m,k,¢')-PRP for
some €', which implies that (n,m, k, €)-PRP can also construct (2n,m, k, €')-
PRP for some €' by regarding (n,m, k, €)-PRP as (n,m, k,€e")-PRF for some
€”. These results imply that pseudorandomness can be used as a important
measure of immunity against chosen plaintext attack even if the encrypting
functions (s-boxes) constructing block cipher are bijective.

In [S97], we showed one sufficient condition such that the basic transfor-
mations with recursive structures yield PRF, and proved that the (5,3) and
the (5,3, -+, 3)-round iterations of the basic transformations of MISTY (pro-
posed by Matsui in [Ma97]) satisfy this condition. They yield a PRF, while
(4,3) and the (4,3,---,3)-round iterations do not. In [S97-2], we showed
stronger sufficient condition for the basic transformations to be PRF, and
show that both the (5,3, ---,3)-round iteration of the basic transformations
of MISTY and the (4,3,---,3)-round iteration of the basic transformations
of MISTY1 satisfy this condition, and as a result, yield PRF.

The block cipher E2 was proposed in [K98] as an AES candidate. This
cipher uses Feistel structures as a global structure like DES, and uses the
SPN(Substitution and Permutation Network)-structure in s-boxes. In this
paper, we apply our previous condition to SPN-structures and basic trans-
formations of E2, and show that this can be easily calculated by some matrix
calculation, and clarify that the linear transformation used in E2 offers good
pseudorandomness.

As another measure of the security for block ciphers, the maximum av-
erage of differential probability was defined by Nyberg and Knudsen by
generalizing provable security against linear and differential cryptanalysis
by Biham and Shamir [NK 94]. In this paper, we estimate the maximum
average of the differential probability of the SPN-structure. In [K98], they
state that this evaluation is practically impossible, but we show that this
can be calculated recursively by a novel but simple calculation and showed
that the linear transformation used in E2 has good property as it is used in
the SPN-structure.

This paper is organized as follows.

We describe the pseudorandomness of block ciphers in Section 2.

In section 3, we describe SPN-structures and block cipher E2.

In section 4, Applying our sufficient condition, we analyze the pseu-
dorandomness of the SPN-structure and E2-like transformations and show
that pseudorandomness can be easily evaluated by the matrix calculation
proposed herein, and clarify that the linear transformation used in E2 has
good pseudorandomness as it is used in the 4-round SPN-structures.

In section 5, we estimate the maximum average of the differential prob-
ability of the SPN-structure.



2 Preliminary

2.1 Notation

For si,s9 € {0,1}", s; @ s2 denotes the bit-wise XOR of s; and sy. F"
denotes the set of all functions from {0,1}" to {0,1}". FZ denotes the set
of all functions from {0,1}" to {0,1}" with the key space Z.

2.2 Pseudorandom Functions Generator

In this subsection, pseudorandom function generator (PRFG) is defined. We
denote a random function r : {0,1}" — {0,1}" as a function that assigns
to all arguments z € {0,1}" independent and completely random values
r(z) € {0,1}". First we introduce a generalized random function for the
proof of pseudorandomness of the basic transformation constructing block
ciphers.

Definition 1 A keyed function r, : {0,1}" — {0,1}"(z € Z) with the key
space Z is a generalized random function if for every xi,zo € {0,1}"(z1 #
z2) and z1,z2 € Z, ry (z1) and r,,(z2) are random and jointly statistically
independent. As a special case, conventional random functions of F™ are
generalized random functions if regarded as functions with key space Z (In
this case, the output value is not depend on the key value z € Z.).

Next we introduce the condition §(n)-random for a random variable in order
to prove the pseudorandomness of the basic transformations of the block
ciphers.

Definition 2 Let X be a random variable that takes on values z € {0,1}",
and (X, X) be a 2-dimensional random variable that takes on values (z1,x2) €
({0,1}7)2.

We define X as d(n)-random if for some event A, such that P(A) <

d(n), (X,X) takes values randomly over the complementary event A

({0,1}")? - A.

[LR86] defined the PRFG. In the following three definitions, we omit the
restriction on the function (which [LR86] denotes as distinguishing circuits)
because, in [M92], they showed that it is not essential in the proof and can
be omitted.

Definition 3 (LR86) A family Fz = {f, : z € Z} of functions f, :
{0,1}" — {0,1}™ is an (n,m,k) pseudorandom function (PRF) with the
key space Z if for every subset {z1,...,xzr} of {0,1}", f.(x1),..., fz(zk) are
uniformly distributed over {0,1}™ and are jointly statistically independent,
when z is randomly chosen from Z.

Definition 4 (LR86) A family Fz = {f, : z € Z} of functions f, :
{0,1}™ — {0,1}™ is an (n,m,k,€) pseudorandom function (PRF) with key
space Z if for all functions g : ({0,1}™)F — {0,1} and for every subset
{z1, ...z} of {0,1}", for z randomly chosen from Z,

[Plg(fz(21), -+, fz(2r)) = 1] = Plg(ry, .., 7i) = 1] < e



where 1, ...,ry are independent and randomly chosen from {0,1}™

Definition 5 (LR86) A pseudorandom function generator (PRFG) with
the key length function l[(n) and degree of local randomization k(n) is the
famaly

f = {f?[),l}l(") n e N},

where ‘7:?0,1}1(70 is an (n,n,k(n),e(n)) PRF with key space {0,1}*™) that is,
for every given argument and key computable in time polynomial in n, in-
dependent of the number of previous evaluations, where €(n) vanishes faster

than 1/Q(n) for every polynomial Q(n)

[LR86] defined a pseudorandom invertible permutation generator as a fam-
ily of permutations that is also a PRFG family, where the required security
property is to approximate, as closely as possible, a random function. How-
ever, in [BKR98|, they use another model for PRP of [Sh49], where the
required security property is to approximate, as closely as possible, a ran-
dom permutation. They also state that the two models of security for PRP
are nearly the same when the number of encrypted blocks m is small, and
that PRF is a better tool than PRP, from two points of view: it permits
easier and more effective analysis of the designed scheme, and the resulting
schemes have a greater level of proven quantative security. This leads us
to suggest that for the purpose of protocol design, what we really want are
PRFs, not PRPs. Therefore, in the following three definitions for PRPs, we
use the models of [LR86].

Definition 6 (LR86) A family Fz = {f, : z € Z} of permutations f, :
{0,1}" — {0,1}" is an (n,k) pseudorandom permutation (PRP) with the
key space Z if for every subset {zy,...,xx} of {0,1}", f.(z1),..., f.(zk) are
uniformly distributed over {0,1}" and are jointly statistically independent,
when z is randomly chosen from Z.

Definition 7 (LR86) A family Fz = {f, : z € Z} of permutations f, :
{0,1}™ — {0,1}" is an (n,k,c) pseudorandom permutation (PRP) with the
key space Z if for all functions g : ({0,1}™)* — {0,1} and for every subset
{z1,...,xx} of {0,1}", for z is randomly chosen from Z,

’P[g(fZ(xl)vva(wk)) = 1] _P[g(rl,"',rk) = 1” Se

where 11, ...,k are independent and randomly chosen from {0,1}"

The existence of PRP under the assumption of the existence of PRF was
proved in [LR86] and [M92].

Definition 8 (LR86) A pseudorandom permutation generator (PRPG) with
the key length function l[(n) and degree of local randomization k(n) is the
family

f = {f?(),l}l(") 'n e N},



where ‘7:?0 1y is an (n, k(n),e(n)) PRP with key space {0,1}}(") that is for

every given argument and key computable in time polynomsial in n, indepen-
dent of the number of previous evaluations, where e(n) vanishes faster than

1/Q(n) for every polynomial Q(n)

Note. The existence of PRPG under the assumption of the existence of
PRFG is proved in [LR86] and [M92].

3 Block Cipher E2

3.1 SPN-Structures [K98]

In [K98], SPN-Structures are defined. First we define the 2-round SPN-
structure as in Fig.1.

First non-linear layer

C1 Cc2 Cm

Figure 1: 2-round SPN-structure

This structure consists of two kinds of layers, i.e. non-linear layer and
bijective linear layer. Each layer has the following feature.

Non-linear layer: This layer is composed of m parallel n-bit bijective
s-boxes.

Linear layer: This layer is composed of bitwise XORs, where inputs
are transformed linearly to outputs per byte (n-bits).

[K98] introduces a matrix expression Pg = {a;;} of linear round function
E, where a;; = 1 means that the input of i-th s-box in second nonlinear
layer linearly depends on the output of j-th s-box in first nonlinear layer,
and a;; = 0 means does not.

Next we define the N-round SPN-structure as in Fig.2. This layer con-
sists of (2N — 1) layers. First is the nonlinear layer, second linear layer,
generally, i-th nonlinear layer (¢ = 1,---,N — 1), and i-th linear layer
(¢ = 1,--+,N) in this order. Furthermore, for the functions fi1,:-+, fnm,
we denote N-round SPN-structures as SPNy p, (f11, fi2,- -, fwvm), where the
functions f;; correspond to the bijection s;; in Fig.2 (1 <4 < N,1 < j <m).



First non-linear layer

Figure 2: n-round SPN-structure

3.2 E2-like transformations

[K98] proposed the block cipher E2. This cipher has Feistel structures and
its s-box is composed of the 2-round Feistel structures defined in the previous
subsection. Here we define E2-like transformations as the Feistel structure
with s-box composed of N-round (in this case, 2-round) SPN-structures as
in Fig.3 . Furthermore, for the functions fi11,- -, fsNm, Wwe denote s-round
E2 like transformations as E2; n m(f111, fi12, -+, fsNm), where the functions
fijx correspond to the bijection s;; in the ¢-th round s-box in Fig.2, Fig.3
(1<i<s1<j<N,1<k<m).

|

2-round 2-round -

SPN- SPN- SPN-

structurg structure| structure|
Oe— O O«—

Figure 3: E2-like transformations



4 Pseudorandomness of SPN-structure and block
cipher E2

4.1 Sufficient Condition for PRFG

In [S97] and [S97-2], we introduced effective sufficient conditions for the basic
transformation of block ciphers to yield PRFG, and proved that basic trans-
formations for MISTY(1) satisfy this condition for some round numbers,
where MISTY is the block cipher proposed in [Ma97]. This condition for
pseudorandomness can be applied to various types of block ciphers in AES
candidates with SPN-structures or Feistel structures, where SPN-structures
are used in CRYPTON, E2, LOKI97, MARS, RC6, RIJINDAEL, SAFER
and SERPENT, and Feistel structures are used in CAST-256, DEAL, DFC,
E2, LOKI97, MAGENTA.
Here we describe the condition in [S97-2].

Definition 9 For a list of functions (oracle gates) fi, fa,---,fs € F™, let
f=v(f1,f2,-5 fs) : ({0,1}™)™ — ({0,1}™)™ be an acyclic circuit that
consists of nbit-and /nbit-or /nbit-not/nbit-ror, nbit-fan-out, fi(i =1,2,---,3),
where f includes only one fi(i =1,---,3). f; appears only once in f. Letyse
yz2e---oym € ({0,1}™)™ be an input of f, and let z1 @250+ - -0z, € ({0,1}™)™
be an output of f which is defined by z1 @ z200--- 02, = f(y;0ys0---0y,,).
Let IPj, € {0,1}"(a € {1,2,---,s}) be an input of f, in the circuit f when
the input of f is yi e yz @ --- ey, let OPy, € {0,1}" be an output of f, i.e.
OPs, = fo(IPy,) when the input of f isyreyz @ -+ ® yp,.

Let yi eyye---ey. € ({0,1}")™ be another input of f, and let 2| @ 25,
-0z € ({0,1}™)™ be an output of f which is defined by zj ®zh0---02 =
flyreyse---eyy). Let IP; € {0,1}"(a € {1,2,---,s}) be an input of fa
in the circuit f when the input of f is yj ey e---ey,,, let OP; € {0,1}" be
an output of fo i.e. OP; = fo(IP} ) when the input of f is yj eyse---ey,,.
Let Z be the key space.

We say 1) satisfies §(n)-condition 1' if and only if there exist (11,12, ,im),
(41,792, »Jm), %arJdo € {1,2,---,8} (a,b € {1,2,---,m}), that satisfy the
following 4 conditions (cf. Fig.4).

1'.1) For every a,b € {1,2,---,m}, iq # ip(a #b), jo 7# jo(a #b), iq 7# Jb-
1'.2) When fi, fa,---, fs € F", if y1 # y; then IPy, # IPJI%I’ and for every
a€{2,--,m},ifyy=y(l=12,---,a—1) and yo # y, then IP;, # IP}ia.
1'.3) For every a,b € {1,2,---,m}, if OPy, is random and fy,---, fi, 1, fi,+1,
-+, fs are random functions of F™ then IPfjb is d(n)-random, where we re-
gard OPy, and IPfjb as random variables. Also if OPy, is random and
fiyooy fin—1, fig+1,---, fs are generalized random functions (oracle gates)
of Fg, then IPy; s d(n)-random.

1'.4) If OPy; ,OFy, ,---,0Py, are random and jointly statistically inde-
pendent, then z1 ® zo @ - - - ® 2, is Tandom.

This definition is essentially composed of three relations: 1'.2) refers to
the relations between the inputs y1, - - -, Y, and the inputs of m input-related
functions (oracle gates) fi,, -+, fi,,. 1'.4) refers to the relations between
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Figure 4: Definition of §(n)-condition 1’

the outputs z1,- -, 2z, and the outputs of m output-related functions (or-
acle gates) fj, -+, fjm- 1'.3) refers to the relations between the outputs
of m input-related functions (oracle gates) f;,,---, fi,, and the inputs of m
output-related functions fj,,---, fj,.. This definition is a generalization of
the essence used in the proof of the pseudorandomness of DES-like transfor-
mation in [LR86].

The following lemma proves that the condition above implies PRFG.

Lemma 1 For a list of functions fi, fa, -+, fs € F™, let f = ¥(f1, fo, -, fs)
: ({0,1}M)™ — ({0,1}™)™, be an acyclic circuit that consists of nbit-and/nbit-
or/nbit-not/nbit-zor, nbit-fan-out, oracle gates f; (i =1,2,---,s), where f
includes only one fi(i = 1,-++,8). For every function g : (({0,1}")™)*
{0,1} and for every set of k arguments x1,- - -, xg, if f satisfies 6(n)-condition
I', then we have

IPlg(f (1), f(z)) = 1 f €r Ynl(F)*)] = Byl < mk(d(n)/2+2 " 1),

Proof. Let fi, f2,---, fs be random oracle gates (functions) of F", let
f= 7»b(fl)f% Tty fs)a let 7y =y oyo @ - oy, € ({07 l}n)m(l <I< k)a let
zii@ 2y @ @ zmy = f(2)(1 <1< k), let (i1,42, -+, im), (J1,72, ", Jm) be
the index used in conditions 1'.1)-1".4) in §(n)-condition 1', let Py, ; be an
input of f;, when the input of f is z;, and let OPy, ; be the output of f;,
when the input of f is z;. We may, for the rest of the proof, assume without
loss of generality that z;, 1 <1 < k, are distinct because of the same reason
as given in the Lemma 1 of [M 92].

For every a € {1,2,---,m}, let Slpfja denote the events that IPy, 1, - -,
IPy, i are distinct, and let £ be the event that for every a € {1,2,---,m}
g]pfja occurs. If 8]Pfja occurs, then OPy, 1,0Py, 3,---,0Py, } are ran-
dom because f;, is a random function. Thus if 8[Pfja occurs for all a €



{1,2,---,m}, f(z1), f(z2),---, f(zr) are random because of 1'.4) in §(n)-
condition 1’; and thus f = v, (f1, f2,---, fs) behaves precisely like a func-
tion chosen randomly from F™" . Therefore the distinguishing probability
is upper bounded by

[Plg(f(z1),-+ flazx)) = 1: f er ¥((F")™)] — Py| <1 — PIE].
We now derive an upper bound on 1— P[£] = P[£], where £ denotes the

k
o | events {IPy; o =
IPfjuv} for 1 <u<wv <k 1<a<m. The probability of the union of
several events is upper bounded by the sum of the probabilities, and hence

1-P[E]=P[E]< > > PP, =1Py,,) (1)

1<a<m 1<u<v<k

complementary event of £. £ is the union of the m

For u # v we have
P[IPyj;, = IPy; »] <d(n)+27"

Note that z, # x,(u # v) means that there exists a € {1,2,---,m}, s.t.
Ylu = Y1vy* "y Ya—1,u = Ya—1,05Yau # Yav, Which means OPfiau and OPfiav
are independent and random from 1'.2) of 1) because f;, is a random func-
tion, which means that I Pfjb“ and [ Pfjb” are random and independent for
every b € {1,2,---,m} except for the case of the probability equaling or
being smaller than §(n), because IPy; is d(n)-random from 1'.3) in d(n)-
condition 1'.
The total number of terms on the right side of (1) is

k mk(k —1) _ mk?
— < )
m( 2 ) 2 =3

Lemma 1 follows.

4.2 Pseudorandomness of SPN-structures and E2-like trans-
formations

For applying d(n)-condition 1 to the SPN-structures and E2-like transfor-
mations, we introduce the next matrix operation.

Definition 10 Let m be a positive integer. For the m X m matrix over
GF(2) A = (aij),B = (bsj)), we define binary operation x by A+ B =
(Vieo(aixAbyj)), where V represents binary operation “or”, and A represents
binary operation “and”.

Using this operation, we obtain the conditions under which the 3-round
SPN-structure to yields PRF.

Lemma 2 The 3-round SPN-structure with linear transformations A, B sat-
isfies 1/2"-condition 1" if all components of Ax B are 1.
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Figure 5: Pseudorandomness of 3-round SPN-structure

Proof. Let A = (a;;),B = (b;j;) and A x B = (c;;), and we select
firs '7fim7fj17" '7fjm as in Fig.5.

Then the condition that I Pfjb depends on OP, , is equivalent to cp, = 1,
because, from the independence of gi,- -, gm, this condition is equivalent
to the condition that there exists g, such that I Pf:'b depends on OF,, and
IP, depends on OPy,,

Next we prove that the randomness of OPy;, implies §(n)-randomness
of IPy; when IPy; dependson OPy, . If OFy,, OPj, is random, the prob-
ability that a value on IPy, and a value on I P, are the same is 1/2". This
implies I Pfjb is 1/2"-random because of the randomness of g. and the inde-
pendence of g1, -, gm. The lemma was proved.

This lemma can be easily generalized for the case of n-round SPN-
structures as follows.

Lemma 3 The s-round SPN-structure with linear transformations A1, Ag,
-+« As_1 satisfies 1/2"-condition 1' if all components of Ay x Ag*---x Ag_1
are 1.

Note. For the matrix P used as the linear transformation layer as in
[K98], all components of PxP are 1. This implies it can yield PRFG (PRPG)
with 3-rounds i.e. with only 24 cryptographic functions, whereas
MISTY (1)-like transformations need 45(36) cryptographic functions and re-
cursive Feistel structures need 27 cryptographic functions. This implies
that, in this case, the SPN-structures is more secure than (recursive) Feistel
structures in the viewpoint of pseudorandomness.

From this fact and lemma 1, we obtain the following theorem in the same
way as Theorem 1 of [LR86],

Theorem 1 Let Fij, for 1 < i < 3,1 < 5 < 8 be 3-8 independent
(n,n,k,€e5) PRFs. Then the 3-round SPN-structures with linear trans-
formation of E2, SPN3g(Fi1,---,Fss), is a (8n,8n,k,e) PRF where e =
8k227" 4+ 31 i3 Y1<i<s €ij

This theorem indicates that the 3-round SPN-structures with linear
transformation of E2 are PRFG.



By the same argument, we can prove the next lemma.
Lemma 4 The 4-round E2-like transformation satisfies 1/2™-condition 1'

Proof. This can be proved by regarding the first nonlinear layer in the first

s-box as fi,, -+, fi,,, first nonlinear layer in the second s-box as fi,,,,,**, fism>
second nonlinear layer in the last s-box and as f;,,-- -, fj,., second nonlinear
layer in the 4-th s-box as fj,,.,, ", fjsm, @s shown in Fig.6.

From this lemma and lemma 1, we obtain the following theorem in the
same way as Theorem 1 of [LR86],

Theorem 2 Let Fijp, for 1 < i < 4,1 <353 <21 < k< 8bed-2-
8 independent (n,n,k,€;5) PRFs. Then the 4-round E2-like transforma-
tions E24 2 8(Fi111,- -+, Fass) s a (16n,16n,k,e) PRF where ¢ = 16k?2™" +
219'54 Zl§j§2 Zlgkgs €ijk

Figure 6: Pseudorandomness of E2-like transformation
This Theorem indicates that 4-round E2-like transformation are PRFG.

5 Maximum Average of Differential Probability of
SPN-Structures

In this section, we consider the maximum average of differential probability
of SPN-structures.

First we define the differentials of block ciphers. We consider the encryp-
tion of a pair of distinct plaintexts by an r-round iterated cipher. Here the
round function Y = f(X, Z) is such that, for every round subkey Z, f( -, Z)
establishes a one-to-one correspondence between the round input X and the
round output Y. Let the “difference” AX between two plain-texts (or two
cipher texts) X and X* be defined as

AX =X @ X*.
From the pair of encryptions, one obtains the sequence of differences

AX(0),AX(1),---,AX(r) where X(0) = X and X(0)* = X* denote the
plaintext pair (so that AX(0) = AX) and where X (i) and X*(7) for (0 <



i < r) are the outputs of the i-th round, which are also the inputs to the
(i 4 1)-th round. The subkey for the i-th round is denoted as Z(.

Next we define the i-th round differential and maximum average of dif-
ferential probabilities.

Definition 11 (LM92) An i-round differential is the couple (o, 3), where
a is the differential of a pair of distinct plaintexts X and X* and (B is a
possible difference for the resulting i-th round outputs X (i) and X*(i). The
probability of an i-round differential («, 3) is the conditional probability that
B is the difference AX (i) of the cipher text pair after i rounds given that the
plaintext pair (X, X*) has difference AX = o when the plaintext X and the
subkeys ZW ... Z(0) are independent and uniformly random. We denote

this differential probability by P(AX (i) = B|AX = «).

The probability of an s-round differential are known to be satisfying the
following properties.

Lemma 5 (NK94) The probability of an s-round differential equals
P(AX(s) = B(s)|[AX(0) = B(0)) =
Y3 Y JIP(AX() =B@6)|AX (i —1) = B(i — 1)).
B(1)

B2 Bls1)i=1

We define the maximum average of differential probability as follows. This
value is known to be the best measure to ensure that the block ciphers are
secure against the differential attacks of block ciphers.

Definition 12 (NK94) We define the maximum average of differential
probability ADPn(fgx by

ADP{), = maxaz0 s P(AX (i) = B|AX = a).

Here we evaluate the maximum average of the differential probability in
the case of the SPN-structure, where we assume all random functions are
bijective. This value was considered to be too hard to evaluate in [K98], so
they used the another approximate measure to estimate the security against
differential attack. However, the following procedures suggest that this is
easy to evaluate.

First we define the functionch : {GF(2)"}™ — GF(2)™, (21, ,Tm) —

(yl,"',ym) by
{ 0 ifz; =0
Yi =

1 otherwise,

and we define the function N(P,,d) for m x m matrix P and v,0 €
GF(2)™ by

N(P,v,5) = #{(AX,AY)|AY = PAX,ch(AX) = v,ch(AY) = §}.

The procedure of calculating the maximum average of the differential
probability in the case of the SPN-structure is as follows.



1) calculate N(P,~,d) for every v,d € GF(2)". For this calculation we
define semi-order < in GF(2)?™ as follows.

a < be (Vi (a@) = 0= b(i) = 0)) A (a # b)

where we denote a(i), b(7) as the i-th significant bit of a, b, respectively.
We define

M(P,7,5) = #{(AX, AY)|AY = PAX, ch(AX) < 7,ch(AY) < 6},

M(P,~,d) can be easily calculated by simple rank calculation as fol-

lows.
2m—rank( ( A B ))
M(P,~,8) = 2 F(v,0) )" 4

where F(v,0) denotes the diagonal matrix whose (i,7) component
equals the i-th significant bit of v for ¢ = 1,---,m, or the (i — m)-
th significant bit of § for i =m + 1,---,2m.

N(P,~,d) can be calculated recursively, using the following relations.

N(Pv')’v(s) = M(P7’Y,6) - Z N(Pa 'Ylvfsl)

v <7,8' <8
2) calculate
Pi(B'(1),6'(0) = pnax P(AX (1) = B(1)|AX(0) = 5(0))
ch(B(0)) = 5'(0),
ch(8(1)) = B'(1)

€ GF(2)™.

0)
(2)),ch(B(i — 1))), calculate P;(8'(7),3' (i — 1)) re-
cursively for every B'(i),['(i — 1) € GF(2)™

Pi(B'(1),5'(0)) =

guz-n S PIAX() = BHIAX (G~ 1) = 5~ 1)
ch(B* (i (ch—(ﬂ()z)))— ch(ﬁ(f()Z - 1)),
« P_1(ch(B(i — 1)), 8'(0))
- @ -1
) max_ P(AX(i) = BG)|AX(i — 1) = B — 1))

ch(B(i— 1)) = B'(i - 1),
h(B(3)) = B(i)

* P 1(B'(1 —1),6'(0))
= (- 1)
3" N(P,B(i),8(i — 1) * pkEED « P_1(8'(i - 1), 5(0)),
B'(i-1)

where pmax is the maximum average of the differential probability of
n-bit bijective s-boxes composing the non-linear layer.



By this procedure, we can exactly evaluate the maximum average of the
differential probability under the assumption P(AX (i) = B(i)|ch(AX (i) =
ch(B(7))) = 1/2™ for any 5(i) (We accept that is “impossible”, but the above
has some validity as an ideal model.).

In the case of m = 8, we get

P(AX (i) = B(i)|AX(0) = 5(0))

( 255p°(for 2-round),

254p" + 255p8 + p?(for 3-round),

p® + 241p° + 284p10 + 162p!! + 206p'2 + 230p'3 + 214p'* + 108p'S
+222p'0 + 73p17 + 193p'8 + 206p'? (for 4-round),

p® + 154p° + 217p'0 + 25p'! 4 240p'2 + 113p'3 4 185p'4 4 77p'd
+77pY6 + Tpl7 + 34p!8 + 56p!° + 34p20 + 109p?! + 233p?2 + 113p?3
+175p%4 + 25p2% + 171p%0 + 226p%7 + 121p?8 + 89p?° + 87p%0
+19p3! + 71p3? + 247p33(for 5-round),

IN

\

by the computer, and this indicates
P(AX (i) = B(i)|AX(0) = B(0)) < 1/2"*

for m(> 4)-round SPN-structures. This upper-bound is smaller than twice
the maximum average of the differential probability of the functions con-
structing the nonlinear layer.

Without the assumption, the estimation is not so effective, but this can
exactly evaluate the number of active s-boxes for all multiple passes. The
evaluation in this section suggests that SPN-structure is a good structure in
the viewpoint of immunity for differential attacks, even if we consider the
multiple paths.

6 Conclusion

This paper examined the pseudorandomness of SPN-structures and E2-like
transformations and showed that this characteristic can be easily calculated
by some matrix calculation. Moreover, we examined the maximum average
of the differential probability of the SPN-structure, and showed that this can
be calculated recursively by a simple calculation. In AES candidate, SPN-
structure is used in CRYPTON, E2, LOKI97, MARS, RC6, RIJNDAEL,
SAFER, SERPENT. We conclude SPN-structure is better in pseudoran-
domness, a little weaker (but sufficiently strong) in immunity for differential
attacks than (recursive) Feistel structures.
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